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Abstract. We develop a simple and straightforward technique for extracting information about
the electrostatic fields created by optical phonons in superstructures directly from microscopic
three-dimensional lattice dynamics calculations. Local fields with a mesoscopic scale of variation
associated with long-wavelength phonons in(GaAs)n(AlAs)m [001] superlattices are derived using
an 11-parameter rigid-ion force-field model. The classification of local fields, their connection to
and distinctions from those obtained from the conventional dielectric continuum approaches is
discussed.

We also develop an alternative approach based on spatially dependent non-local micro-
scopic dielectric screening in semiconducting superstructures. The analytical properties of long-
wavelength phonon frequencies and associated electric fields find an explanation in terms of
an eigenvalue problem for the non-local frequency-dependent microscopic dielectric matrix.
Rigorous expressions for eigenfields and eigenpotentials are derived in the exactly solvable
model of the dispersionless continuum. A simple and practical approximation with a short-range
(elastic) dispersion included shows an excellent agreement with lattice dynamical calculations for
(GaAs)n(AlAs)m [001].

1. Introduction

The investigation of polar optical vibrations in semiconductor layered structures has been
attracting considerable attention in the last decade because they are important as a source of
a strong electron–phonon interaction [1–6]. A lot of effort was devoted to the elaboration of
a tractable macroscopic model of polar optical phonons. The early continuum theories based
on the alternative electrodynamical [7–10] and mechanical [11] approaches did not correlate
with each other and were at variance with microscopic lattice dynamics calculations [12–16],
and so gave rise to discussion. The subsequent analysis using simplified lattice dynamical
models [17–20] and the detailed investigation of the general mathematical properties of
continuum solutions [19, 21–23] revealed the essence of the problem as an incompatibility
of electrodynamical and mechanical boundary conditions. The proper incorporation of the
elastic component into the theory in the hydrodynamic limit [24–27] ensures that there is an
opportunity for matching the correct boundary conditions and makes it possible to reproduce
the microscopic lattice dynamics data, obtaining at the same time closed expressions for
the phonon electric fields. These calculations were recently confirmed by experimental
investigations of the directional dispersion of phonons in superlattices [28]. The general
peculiarities distinguishing the polar optical vibrations in the semiconductor layered structures
from the bulk crystal case are well understood both experimentally and theoretically, and are
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characterized by the presence of confined and interface modes. It was established in [25,27,29]
that longitudinal and transverse components of vibrations are mixed in an arbitrary direction
of phonon propagation.

A grave shortcoming of the aforementioned macroscopic approaches is that they implicitly
ignore the difference between the effective (local) and actual (test charge) fields. In fact, they
assume that the long-range forces which contribute to an ion’s polarization are caused by the
test charge field. In our paper we develop a theory of non-local dielectric response which
provides a proper macroscopical extension, taking the local field corrections into account.

Thus our theory reveals a picture of phonon electric fields which differs in some essential
details from the conventional one. Note in this connection that the aforementioned models
to the best of our knowledge have never been checked directly by means of microscopical
calculations. The fields derived from the lattice dynamics [3–6] are based on a model
expression for the electron–phonon potential which essentially follows from a one-dimensional
superlattice model [21]. However, the simplified dipole model [21] itself suffers from the
same drawback concerning the local field corrections. In our paper we extend the approach
of [21] with the local field corrections included to a realistic three-dimensional lattice dynamics
calculation. This method gives information directly and so allows one to verify the models
relevant to the phonon electric fields.

The two approaches presented here agree each with other fairly well. Combination of the
two methods gives in our opinion the most natural link between microscopic and continuum
theories.

The organization of the paper is as follows. In section 2 we develop the generalization
of dielectric theory with the local field corrections taken into account. Section 3 describes the
methods used for the computing of phonon electric fields directly from lattice dynamics data.
In section 4.1 we discuss the results of direct lattice dynamics calculations for the superlattice
(GaAs)10(AlAs)10 [001] and in section 4.2 we interpret these results from the viewpoint of a
non-local dielectric response theory. Section 5 gives our conclusions. The appendix contains
an exact solution within a model of a dispersionless inhomogeneous dielectric continuum.

2. Non-local microscopic dielectric response in the phonon frequency region

2.1. General considerations

The dielectric continuum approaches [7–10, 17, 21, 24, 25, 27] essentially treat the dielectric
response in nano-structures as a local relation between applied and induced fields with spatially
and frequency-dependent dielectric constants which are different for each constituent material.
Strictly, the dielectric properties of inhomogeneous media should be described in a non-
local manner as an integral relation between the applied and induced fields with a spatially
and frequency-dependent kernel [30]. It has long been established in the electron theory
that the spatially dependent dielectric constant (dielectric function) approximation actually
neglects the distinction between the effective (polarizing) and actual (test charge) fields and so
is inappropriate. The rigorous dielectric matrix approach describes properly the so-called
local field corrections and is adequate for providing an understanding of the response in
inhomogeneous media [30–34]. In this section we develop a theory which inherently takes
into account the non-local linkage of applied and effective fields and properly incorporates the
local field effects for the nano-materials in the infrared frequency region. Similar ideas were
developed recently in [35].

We begin with the phenomenological expression for the energy of a crystal in a spatially
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slowly varying electric fieldE(r) [36]:

W = 1

2

∑
nn′
un · Φ̂sr (nn′)un

′ −
∑
n

∫
un · Ψ̂(n, r)E(r) dr

− 1

8π

∫
E(r) · ε̂∞(r, r′)E(r′) dr dr′. (1)

In this expression,un denotes the displacement of thenth atom, the force-constant matrix
8sr
αα′(n, n

′) describes the short-range part of the interatomic interaction including that
associated with electrostatic forces but contains no contribution associated with a macroscopic
field, andα, α′ are Cartesian indexes. The effective transverse charge tensor9αα′(n, r) gives
theα′-component of the dipole moment induced at the pointrwhen the ion at siten is displaced
by unit distance in theα-direction. ε̂∞(r, r′) is the electronic contribution to the dielectric
matrix.

The force acting on the atom due to its displacementun is determined from (1) as
−∂W/∂un. The electric displacement is defined asD = −4π ∂W/∂E. Then, from the
classical equation of motion, assuming the same harmonic time evolution with a frequencyω

for all quantities, we derive

Dα(r, ω) =
∑
β

∫ {
ε∞αβ(r, r′) + 4πN−1

∑
λq

Gλq
α (r)G

λq∗
β (r′)

�2
λ(q)− ω2

}
Eβ(r

′, ω) dr ′. (2)

The expression in the curly brackets describes the non-local frequency-dependent dielectric
response of an inhomogeneous medium to an applied field. The quantityGλq(r) is defined by
the relation

Gλq(r) =
∑
lp

m−1/2
p eiq·(r−Rl )Ψ̂(p, r −Rl)f

λq(p). (3)

Herefλq(p),�2
λ(q) are the solutions of the eigenvalue problem with the dynamical matrix of

short-range forces derived from8sr
αα′(lp, l

′p′) in the usual way [36],l is the number of the unit
cell andp labels the atom inside it,q is a phonon wave-vector inside the Brillouin zone, and
N is the number of unit cells in the crystal.

Having in mind the application to(GaAs)n(AlAs)m, we consider the case of a spatially
independent electronic contribution̂ε∞(r, r′) and hereafter approximate it asε∞δαβδ(r− r′)
for the sake of simplicity. A generalization to the case with the spatial dependenceε̂∞(r, r′)
is straightforward.

Performing the Fourier transformation, neglecting the retardation effects, restricting
consideration to the case of longitudinal fieldsE(k, ω) = kE(k, ω)/k, and using the trans-
lation propertŷΨ(lp, r) = Ψ̂(p, r −Rl) whereRl is a direct-lattice vector, we find from the
Maxwell’s equation divD = 0∑

K ′

{
ε∞δKK ′ + 4πVc

∑
λ

gλq(K)g∗λq(K ′)
(�2

λ(q)− ω2)

}
E(q +K ′, ω) = 0. (4)

Here

gλq(K) = (q +K,Gλq(K))|q +K|−1.

K is a reciprocal-lattice vector, andVc is the unit-cell volume. Non-trivial solutions of (4)
exist if�2

λ(q)− ω2 6= 0. Making the substitution

Cλq =
∑
K

gλq(K)E(q +K, ω)(�2
λ(q)− ω2)−1
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reduces (4) to the eigenvalue problem∑
λ′

{
�2
λ(q)δλλ′ + 4πVcε

−1
∞
∑
K

gλq(K)g∗λ
′q(K)

}
C
λ′q
i = ω2

i (q)C
λq
i . (5)

The irregular term(q, Ḡλq)(q, Ḡλ′q∗)/q2 which essentially depends on the direction of
q is an important peculiarity of equation (5). HerēGλq is a space average (zero Fourier
component) ofGλq(r). It is easy to check by direct substitution that the quantities

Ei(q +K, ωi(q)) =
∑
λ

C
λq
i g

λq(K) (6)

satisfy (4) and consequently should be associated with the longitudinal (eigen)field created by
a lattice vibration with a frequencyωi(q).

We regard the fieldsE(r) as slowly varying functions on the interatomic scale. In other
words, we believe thatE(q + K) ≈ 0 for any |K| & π/a0 wherea0 is the interatomic
distance. In a bulk crystal where the lattice vectors|Rl| ∼ a0, the only reciprocal-lattice
vector which satisfies this condition isK = 0; hence only a macroscopic component exists,
and any microscopic fields withK 6= 0 should vanish for a long-wavelength phonon, which
is the usual result [36]. In a superstructure geometry, the dimension of the large super-cell
|Rl| � a0. Therefore an entire set of reciprocal-lattice vectors exists with|K| 6 π/a0. Then
it follows from (6) that components of fields having the period of the super-cell should arise.
One is led to conclude that phonons can in some circumstances create microscopic (local)
electric fields showing a variation on the scale of the super-cell width, attended with a slow
variation on the interatomic scale. They should be distinguished from the macroscopic fields
which correspond toK = 0 and have the crystal dimension as the scale of variation.

2.2. The microscopical dielectric matrix for superstructures

For a superstructure(AC)n1(BC)n2 constructed from binary sub-cells, it is convenient to
introduce the envelope functionsSλ(p) via the relation

Sλ(p) = (−1)p(mp/µp)
1/2fλ(p) (7)

whereµ−1
p = (m−1

p + m−1
p+1)/2 is a reduced mass. The centre-of-mass displacement in any

binary sub-cell will be

µ−1/2
p Sλ(p)− µ−1/2

p+1 S
λ(p + 1)

and should be close to zero for a long-wavelength optical vibration as long asµp = µp+1. So,
unlike the eigenvectorsfλ(p), the reduced displacementsSλ(p) should be smooth functions
everywhere except possibly in the vicinity of the interface. This observation is readily
confirmed in our lattice dynamics calculations (section 3), and was already noted in [12].

Using the relationship

M−1
M−1∑
m=0

exp(2π i(k − k′)m/M) = δkk′ (8)

which is valid for any integersM,m, k, k′ if 0 6 k < M and 06 k′ < M, one can make a
formal transformation from ‘quasi-continuum’ functions into continuum ones [38]:

Sλ(z) = (2Nc)−1
2Nc−1∑
m,p=0

Sλ(p)e2π im(z−pa0)/D

Ψ̂(z′, z) = (2Nc)−1
2Nc−1∑
m,p=0

∫ ∑
l

Ψ̂(p, r −Rl)e
iq·(r−Rl ) dx dy

× (−1)pm−1
p

√
µpe2π im(z′−pa0)/D

(9)
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whereD = 2a0Nc is a period of the superlattice,a0 is the inter-layer separation, and
Nc = n1 + n2 is the number of binary sub-cells. Then (3) can be rewritten as

Gλ(z) =
∫

Ψ̂(z′, z)Sλ(z′ − z) dz′. (10)

The symmetry properties ofSλ(z) follow from those of the phonon displacement vectors
fλ(p). The symmetry group of(AC)n1(BC)n2 [001] is D5

2d or D9
2d depending on the

parity of Nc. At the centre of the reciprocal spaceq = 0, the symmetry classification is
(Nc − 1)01 + (Nc + 1)03 + 2Nc05 in the notation of [37]. The vector envelopesSλ(z) of
the one-dimensional representations01, 03 have the only non-vanishingz-components. They
are odd and even functions ofz respectively with respect to the central plane of a slab. The
two-dimensional representation05 has both odd and even envelopesS(z) with non-vanishing
in-planex- andy-components. As9αα′(z′, z) has the symmetry of the crystal space group,
the properties ofGλ(z) are the same as those ofSλ(z).

Following along the lines of section 2.1, a long-scale periodicity in the growth direction
in a binary superlattice(AC)n1(BC)n2 [001] implies that the essential reciprocal-lattice vectors
areK = {0, 0, 2πm/D} wherem = 0, . . . , Nc−1. The summation in (4), (5) reduces to that
of thez-components ofK 6= 0. After a transformation to a real space, one gets from (6) in
the long-wavelength limitq→ 0

Ei (z) =
∑
λ

Ciλ(q)[(G
λ
z (z)− Ḡλ

z )ez + q(q, Ḡλ)/q2] (11)

whereez = (0, 0, qz/q). The first term in the square brackets corresponds to the microscopic
components of fields which are always directed along thez-axis. The last term gives the
macroscopic contribution. Note that the in-plane components ofEi are always of macroscopic
nature. Thexy-polarized representations05 never produce any local components of fields.
The space averagēGλ vanishes for odd states, so they do not create a macroscopic contribution.
Consequently the eigenfields of the odd representation01 are always of purely local nature.
The evenz-polarized representation03 and the even components of the in-plane-polarized
representation05 both haveḠλ non-vanishing, so they are coupled by the irregular term and
can create a macroscopic contribution. Having non-zeroGλ

z(z), the representation03 always
produces local field components.

2.3. The model of a dielectric response in the[001] superlattice

Henceforth we assume a well pronounced difference between the short-range (elastic) prop-
erties of the individual sub-layers; hence the optical displacementsfλ(p)and consequently also
the envelopesSλ(z) should be well confined inside sub-layers. A reasonable approximation
which has the necessary symmetry properties could be

SLJkα (z) = n−1/2
L e

(J)

α sin
πk(z− τL)

dL
2L(z) (12)

HereL = 1, 2 is the label of the sub-layer,nL is the number of binary sub-cells in it,
k = 1, . . . ,2nL, 2L(z) = 1 if 0 6 (z − τL) 6 dL and zero otherwise,τ1 = 0, τ2 = 2n1a0

are the coordinates of the left-hand interfaces of the slabs, andd1, d2 are the corresponding
thicknesses of the slabs.e(J ) is the unit vector of the0J th displacement with non-vanishing
componentse(1)z , e

(3)
z , e

(5) ⊥ z. For anyq = (qt , qz) it is convenient to direct thex-axis of the
Cartesian system along the direction ofqt . As the05 are doubly degenerate, one can always
choosee(5x) ‖ x, e(5y) ‖ y. In the latter case, the second term in (5) vanishes; hence the
corresponding solutions areω2

(5y)(q) = �2
(5y).
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The necessary parity properties of (12) are provided if the corresponding integersk are
a = 2m for 01, ands = 2m+ 1 for03. To avoid a possible misunderstanding, let us stress that
odd integerscorrespond toeven representationsand vice versa. The representation05x has
both odd and even components. We retain for the integers which correspond tox-polarized
05x the labellingsu = 2m andg = 2m+ 1 in order to distinguish these states fromz-polarized
01 and03.

One can see a role of9αα′(z′, z) in cutting off the components|Kn| > π/a0 from a
formally infinite set in the Fourier decompositions of bothEα(z) andSα(z). Hence we shall
consider9αα′(z′, z) as a function that is well localized at a distance of the order of a bilayer
width 2a0. The simplest approximation consists in neglecting its slow dependence in the
second argument9αα′(z, z′) = δαα′9(z) where9(z) = ξL/(ηVa

√
µL) if |z| 6 η and zero

otherwise, withη ∼ 2a0. Va is a volume per atom,ξL is the modulus of the ion charge andµL
is the reduced mass in theLth slab. This leads to the expression

GLJk
α (z) = n−1/2

L e(J )α

ξLdL

Va
√
µLπkη

sin
πkη

dL
sin

(
πk
z− τL
dL

)
2L(z). (13)

In what follows, we neglect the overlapping ofGLJk
α in different layers. If also

ξ2
L(µLVa)

−1/(�2
(L) − �2

(L′)) � 1, we can use perturbation theory and reduce the dimension
of problem (5). In a good approximation we can introduce an effective background dielectric
constantεL∞ of any chosenLth slab. We just add toε∞ the contribution to (4) from another slab
L′ with the frequency denominator�2

λ − ω2 replaced by�2
L′ − �2

L. Hereafter all quantities
relate to the chosen layer, so the indexL can be omitted.

After some algebra one gets

3
(5y)
kk′ = �2

kδkk′ 3uu′ = �2
uδuu′ 3aa′ = (�2

a +B2
a )δaa′

3gg′ = �2
gδgg′ + hgg′q

2
x /q

2 3gs = hgsqxqz/q2

3ss ′ = (�2
s +B2

s )δss ′ − hss ′ + hss ′q2
z /q

2 q2 = q2
x + q2

z

(14)

where3kk′ stands for the expression inside the curly brackets in (5) and

Bk =
√

4π/(ε∞Vaµ)ξd sin(πkη/d)/(πkη)
hkk′ = 2n[1− (−1)k][1 − (−1)k

′
]BkBk′/(Ncπ

2kk′).
(15)

We intend to apply the above theory to the investigation of(GaAs)n1(AlAs)n2 [001]
superlattices in section 4. As the local field corrections produce a noticeable effect, careful
verification by an independent method is very desirable. It turns out that there exists an
opportunity to make a check by means of a direct calculation. It is commonly accepted
that microscopical lattice dynamics calculations cannot give direct knowledge relevant to the
phonon electric fields. Actually, a way of extracting this information was already presented
in [17,21], and was applied to a simplified one-dimensional dipole superlattice model. In the
next section we extend this approach to a realistic three-dimensional lattice dynamics model.

3. Electrostatic fields of phonons in a lattice dynamics

Let up = mp
−1/2fλq(p)bqλ be the displacement of thepth ion that is involved in the

propagation of theλth phonon with the wave-vectorq and the amplitudebqλ. Here we regard
the fλq(p) as the eigenvectors of a full lattice dynamical problem which contains both the
short-range and the electrostatic part. Then the electric contribution to a force acting at the ion
at a lattice positionRp can be derived by definition as

Felα (Rp) = −
∑
p′β

Cαβ(pp
′|q)up′β (16)
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whereCαβ(pp′|q) is the electrostatic contribution to the interatomic interaction derived by
Ewald’s method [36]. The local electrostatic field at the lattice pointRp can be defined as
ξpE

local
α (Rp) = Felα (Rp) whereξp = (−1)pξ is the ion’s (transverse) charge. The force

Felα (Rp) as a function ofRp contains both fast (short-range) and slow components. One
can exclude the short-range contribution from (16) using a well known Lorentz relationship
between the actual (test charge) fieldEα(Rp) and the local one:

Eα(Rp) = E local
α (Rp)− 4π5α(Rp)/3

where5α(Rp) is a lattice polarization at the ion site.
From the definition of a polarization as a density of a dipole moment, one has, in a binary

sub-cell,Π(p) = (zpup + zp+1up+1)/(2Va). Herezp is an effective dynamical charge of
an ion which phenomenologically takes into account the electronic contribution to the lattice
polarization asz2

p = ξ2
p/ε∞ [31,32,34]. Using (7), we have, for the polarization produced by

theλth vibrational mode,

5α(p) ≈ (Vaµp)−1zpm
1/2
p f λα (p)bλ

as long as the property of the slow variation|(Sλα(p)− Sλα(p + 1))/Sλα(p)| � 1 is valid.
To avoid some convergence problems which arise in the standard Ewald method for layered

structures [14], we use a mass-defect approximation presented in [39, 40]. Let us consider a
superlattice(GaAs)n1(AlAs)n2 grown along thez-axis with a super-cell consisting of two slabs
with n1 andn2 bilayer sub-cells respectively. We neglect the difference between the lattice
constants and construct a superlattice unit cell, imposingRp = Rn + rs ,Rn = a0(0, Yn, 2n),
wheren = 0, . . . , Nc−1; s = 1, 2; r1 = 0,r2 = a0(1, 1, 1). Herea0 = a/4 is the monolayer
separation,a is a bulk lattice constant,Yn = frac(n/2)where frac(y)means the fractional part
of the expressiony. The positionss = 1 are occupied by Al if 06 n < n1 and by Ga if
n1 6 n < Nc; s = 2 is the position of As. If we accept that the interatomic interactions in
bulk GaAs and AlAs coincide, then the ion charges of Ga and Al should also be identical (and
hence have the opposite sign to that for As). Then, using Ewald’s expression [36] and (8), one
can prove the relation [41]

CEwald
αβ (ns, n′s ′|q) = N−1

c

Nc−1∑
m=0

cEwald
αβ (s, s ′|q +K)e−i(q+K)·(Rn−Rn′ ) (17)

wherecEwald
αβ (s, s ′|κ) is the Coulomb contribution for bulk GaAs,q belongs to the Brillouin

zone of the superlattice, and theK are defined in section 2.2.
An alternative approach to the calculation of the electrostatic fields consists in the

replacement of the point ion’s interaction matrix̂C in (16) by that of interacting Gaussians
ĈGauss, and now treatingFelα (Rlp) just as a force acting on a test chargeFelα (Rlp) = ξpEα(Rlp).
This idea was advanced in [21] via an example of a quasi-one-dimensional lattice dynamical
model. In three dimensions, we can again avoid the convergence problems by assuming Al
and As to have the same charges, considering a superlattice as a superstructure of GaAs and
replacing in (16)CEwald

αβ (ns, n′s ′|q) byCGauss
αβ (ns, n′s ′|q) as calculated from (17) with

cGauss
αβ (ss ′|k) = 4πzszs ′

VB

∑
Q

(k +Q)α(k +Q)β
(k +Q)2

e−(k+Q)2/(4G2)eik·(rs−rs′ ). (18)

Summation over the reciprocal-lattice vectorsQ of bulk GaAs is assumed in equation (18),
k belongs to its Brillouin zone, andVB = a3/4 is the GaAs bulk unit-cell volume. The short-
range oscillations inFelα (Rlns) disappear abruptly in the vicinity of the broadening parameter
G = (0.38)2π/a, implying that any bulk vectorsQ longer than≈π/a0 are effectively cut off
and the remaining smooth contribution essentially coincides with that computed withĈEwald.
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4. Results and discussion

4.1. Lattice dynamics

It is convenient to begin our analysis of phonon fields from the lattice dynamics results.
Hereafter, we adopt the mass-defect approximation with the 11-parameter rigid-ion model of
Kuncet al [42] for bulk GaAs which was earlier applied to(GaAs)n(AlAs)m [001] in [13]. The
calculated spectrum and displacement patterns reproduce features which are well established
elsewhere [12–16]. The left-hand panel of figure 1 displays a high-frequency part of the long-
wavelength optical spectrum which corresponds to the vibrations confined in the AlAs slab of
the (GaAs)10(AlAs)10 unit cell. The picture for the GaAs-like vibrations is similar, and we
will not discuss it here.
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Figure 1. The directional dependence of the frequencies for AlAs-like long-wavelength phonons
in GaAs10AlAs10 [001] as calculated within the 11-parameter rigid-ion model (left-hand panel) and
within the non-local dielectric model (right-hand panel).θ is the angle between the phonon wave-
vectorq → 0 and the superlattice growth directionz. The symmetry classifications correspond
to those given in [37]. Solid curves correspond to the representations03 (even) and05x (even).
Dashed lines correspond to the full-symmetry representations01 (odd). Dotted lines correspond
to 05x (odd).

In the long-wavelength limitq→ 0, all of the optical frequenciesω(03)exhibit directional
dependence while theω(01) do not. The05 phonons can be divided into two groups. Half
of them also display directional dependence. It is very pronounced for the most energetic
05 phonon. For the othern1 − 1 phonons of that group, the angular dispersion is small but
definitely exceeds the level of computational error. A survey of the polarization vectors shows
that the ion displacements for this group are even with respect to the central plane of the active
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slab. The remainingn1 05 phonons have odd displacement patterns and never show directional
dependence. The corresponding frequencies are always doubly degenerate within the limits
of computational errors.
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GaAs10AlAs10 [001]. (a) Lattice dynamics calculations. (b) The dielectric model. The sequence
of diagrams corresponds to that of the corresponding representations in figure 1. Distance alongz

is in units of the atomic monolayer width. The electric fields for05x (not shown here) are constant
and always disposed in thexy-plane (see the text).

The two approximations discussed in section 3 give the same electric fields. The calculated
amplitudes of the fields (16) at the monolayer positions for the long-wavelength optical phonons
in the AlAs slab are displayed in figure 2(a). In (16) we have adoptedbqλ = (h̄/2ωλ(q))1/2 as
the standard value of the classical amplitude, which approximately corresponds to one phonon
per super-cell in the quantum case. The results are also qualitatively the same for AlAs- and
GaAs-like phonons and we do not discuss the latter here for reasons of space.

In the long-wavelength limitq→ 0, the fields associated with any vibrations of symmetry
01 and phonons of symmetry03 that are longitudinal atq ‖ z, exhibit a well known picture of
confined bulk states which are odd and even functions, respectively, with respect to the central
plane of the active slab. The picture of the fields atq ⊥ z associated with the transverse03

phonons is completely different. They contain spatially varying components inside the active
AlAs slab but do not vanish in the neighbouring GaAs slabs, and consequently cannot be strictly
considered as confined states. One can check that their spatial average is exactly zero. As they
are extended throughout the whole crystal, they could be associated with the so-called bulk-
like interface phonons of the dielectric continuum approaches. However, they do not visibly
display an exponential decay into the conjugated layers which is the conventional result in
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the continuum approaches. Another new and important feature of our findings is the intensity
dependence of the fields on the frequency. To the best of our knowledge this peculiarity has
not been detected in continuum theories. However, it could have been expected because the
high-order modes originating from the short-wavelength phonons of the bulk crystals should
be less influenced by the contribution of long-range forces.

Representation05 never creates az-component of the field. The in-planex–y components
of the fields always vanish for the transverse configurationq ‖ z when05 phonons propagate
along thez-axis. Relative to the longitudinal configurationq ⊥ z, all 2n1 of the05 phonons can
be divided into two groups. The half of the05 phonons which have odd displacement patterns
never create any electric fields. The othern1 of the05 phonons with even displacement patterns
create the fields which lie in thexy-plane and have only in-plane macroscopic components.
The magnitude of the in-plane macroscopic component of the field achieves its maximal value
for the most energetic phonon of this group. It has a small but non-vanishing value for the
othern1− 1 phonons.

An inspection of the results for various ratios of slab widthsn1, n2 reveals the general rule
that the maximal number of electrically active frequencies coincides in each group (z-polarized
01, 03 andxy-polarized05) and is equal to the number of bilayersnL in the active slab, while
the minimal wavelength approximately corresponds to the bilayer width.
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Figure 3. Electrostatic potentials associated with long-wavelength03 (q̂ ⊥ z) and01 (anyq→ 0)
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Figure 5. Electrostatic fields associated with two selected
01- and03-originated AlAs-like phonons at wave-vector
(0, 0, π/D).

As one can see from figure 3, panels (LD), the potentials created by AlAs-originated long-
wavelength01 (odd) phonons vary quickly in the AlAs layer and are constant in the conjugated
passive GaAs layers. The in-plane-propagating(q ⊥ z) 03 (even) phonons create potentials
which vary rapidly inside the AlAs slab (figure 3, panels (LD)) and are linear functions ofz in
the conjugated GaAs layers. The potentials created by03 (even) phonons propagating along
the growth direction of the superlattice,q ‖ z, display a staircase behaviour (figure 4) which
coincides qualitatively with that discussed in reference [43]. They cover the whole crystal with
a rapid variation inside the active slab and are also constant inside the conjugated GaAs slabs.

Phonons with finite wave-vectors can be analysed on the same footing. The rep-
resentative results of lattice dynamical calculations for two selected AlAs-like phonons in
(GaAs)10(AlAs)10 at the Brillouin-zone edge(0, 0, q), q = π/D, are shown in figure 5.

The calculated fields for in-plane propagation with the wave-vector(q, 0, 0) for six high-
frequency modes are shown in figure 6, panel (LD). The valueq = 2π/D = 0.11 Å−1 was
chosen as a representative one. Each field has a part which is quasi-confined in an active slab and
a component penetrating into a passive layer to a greater or lesser extent. One could associate
these extended components with the interface modes of the continuum theories. However, the
latter should be substantially damped at this value ofq inside a passive slab [4,6], while some
of modes in figure 6, panel (LD), do not show signs of exponential decay at all and display
instead a linearz-dependence. All of the modes contain admixtures of extended components,
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Figure 6. Electric forces created by in-plane AlAs-like phonons with the wave-vector(2π/D, 0, 0).
Panel (LD): calculated from the lattice dynamics; panel (DM): the dielectric matrix approximation.
Dashed curves: ReEz(z); solid curves: ImEx(z); dotted lines: spatial averages of ImEx (macro-
fields).

while according to reference [25, 27] a genuine interface state should not be coupled with
the odd fields. One can see that each field has a realEz-component and an imaginaryEx-
component, and consequently has a circular polarization. These patterns persist qualitatively
for the different widths of layers and various formal ratiosmGa/mAl provided that the ratio is far
enough from unity. An examination in a more elaborate (bond-charge) model reveals similar
results. The picture does not seem to be entirely consistent with the commonly accepted notion
and needs an explanation. That is provided by a microscopical dielectric response analysis
which is developed in the following subsections.

4.2. The non-local dielectric model

4.2.1. The dispersionless continuum.The general qualitative consequences of local field
corrections incorporated into the dielectric theory follow from the exact solution of (5), (14)
which is available within the model of a dispersionless continuum and is presented in the
appendix. In accordance with the conventional continuum approaches, the greater part of the
vibrational states are confined inside an active slab and are dispersionless. There are two
selected modes with direction-dependent frequencies, which is also a familiar result. The new
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finding is that this angular dispersion originates from the non-local nature of the dielectric
response. It appears that the frequencies as functions of the phonon propagation direction
(A.3) are different from those obtained from the interface-mode transcendent equation of the
continuum theories. The corresponding fields (A.5) and potentials (A.8) are extended into a
non-active slab, but their shapes (stepwise and saw-edged, respectively) differ qualitatively
from the conventional picture of exponentially evanescent interface states. The remarkable
similarity of this result with the lattice dynamics calculations (figure 3, panels (LD), (DM))
attests to these features being representative of the real physical situation.

4.2.2. Long-wavelength phonons in(GaAs)10(AlAs)10 [001]. As is established elsewhere
[25, 27], any realistic approximation should take into account a dispersion of short-range
forces. To make the separation of Coulomb forces in (1) into short-range and long-range parts
into a somewhat better defined procedure, let us look at the well known Ewald expression
for the electrostatic contribution to a dynamical matrix [36]. Usually it is considered as a
purely computational trick—rearranging the conditionally converging series into two rapidly
converging contributions in the direct and reciprocal spaces respectively. At the same time, one
can treat the role of the Ewald breaking parameter as that of cutting off the Coulomb interactions
of ions outside the corresponding sphere while the reciprocal sum includes all other interactions.
So we can look at this procedure as a method of separation of the short-range forces (direct-
lattice summing) and long-range ones (reciprocal-lattice ones). Consequently we have taken
the direct-lattice Ewald contribution with the best-converging breaking parameterG ≈ 0.5π/a
and united it with the covalent force contribution of the 11-parameter model [42] to give
the overall short-range input. The resulting short-range frequency dispersion in the relevant
direction(2π/a)(00κ) for bulk AlAs and GaAs can be approximated by simple functions:

�Bx,z(κ) = �− ηx,z(1− exp{−(κ/χx,z)R}) (19)

whereR = 4, 2 for z- andx-polarizations respectively. The values of the adjustable para-
meters for bulk crystals appear to be: AlAs:� = 362 cm−1, ηz = 22 cm−1, ηx = 22 cm−1,
χz = 1.36, χx = 1.08; GaAs:� = 268 cm−1, ηz = 40 cm−1, ηx = 55 cm−1, χz = 1.54,
χx = 1.24.

The application of a dielectric approach to the representative case of(GaAs)10(AlAs)10

[001] requires the diagonalization of a 10× 10 matrix (14). In view of the small short-range
dispersion (19), it would be a reasonable approximation, at least for the case whereq → 0,
to treat (12) as a standing wave of length 2dL/k inside the corresponding layer. Due to the
greater dispersion, this approximation is less well founded forx-polarized phonons; however,
the influence of high-orderg-modes, except the most energetic one (that withg = 1), is
negligible, so in effect the problem reduces to diagonalization of a 6× 6 matrix. So we have
taken�k = �Bz (Qk) if k = a, s and�k = �Bx (Qk) if k = g, u whereQk = ak/(2dL).

We have found that the results are improved substantially if we introduce an effective
width of the layersdL which differs from the actual slab thickness, together with effective
positions of the interfaces given by the relationsd1 = 2n1a0 + 2δ1, d2 = 2n2a0 + 2δ2,
τ1 = −δ1, τ2 = 2n2a0 − δ2, which allowSLJkα (z) to spread a little into the neighbouring
layers. The effective parameters are different forz- andx-vibrations, and were chosen as
δ1,2 = a0 for 01, 03 and δ1,2 = 0 for 05. We found that the qualitative results depend
substantially on these parameters. This dependence correlates with the influence of the spatial
charge parameterη and works in the same direction—lowering the frequencies of high-order
modes and decreasing the amplitudes of the corresponding fields. This fact should be regarded
as evidence of the importance of the interface region. The transverse charge parameter is taken
asξ = z/

√
ε∞, with the effective dynamical charge of the ionz taken from [42], and with
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ε∞ = 12 andη = 1.7a0.
The calculated AlAs-like long-wavelength phonon spectrum for(GaAs)10(AlAs)10 [001]

is presented in the right-hand panel of figure 1 and shows a good agreement with the angular
dispersion obtained from the direct-lattice dynamics computations (left-hand panel). From
dimensionality considerations, the solutions of (5) are normalized to a standard amplitudebqλ
as in section 4.1. As one can see from figure 2(b), the forms of local fields also agree well with
those calculated in a lattice dynamical approach (figure 2(a)).

Now the properties of the optical phonons in superstructures and the associated electric
fields can be interpreted from the viewpoint of non-local dielectric theory.

The matrix (14) is block diagonalized. The odd phonons with different polarization are not
coupled due to vanishinḡGλ, and their frequencies do not depend on the direction of the wave-
vector. The evens-modes03 andx-polarizedg-states from the set of05 are hybridized via the
irregular termhgsqxqz/q2 into ann×n block, and so their frequencies are direction dependent.
They are decoupled atqx = 0, with n longitudinalz-polarized solutionsω2

s = �2
s + B2

s and
n transverse onesω2

g = �2
g with x-polarization. As the block3ss ′ in (14) is diagonal, the

z-polarized solutions coincide with the initial basis (13). They create both macro-fields and
local fields which are directed alongz, the latter being well confined inside the corresponding
layer. For the in-plane configuration,s- andg-phonons are also decoupled, but the block3ss ′

now needs diagonalization and its eigenvectors differ from the initial basis. According to (11),
they contribute only to the local fields directed along the growth axis. Thex-polarizedg-states
never create local fields. Propagating in thexy-plane, they produce in-plane macro-fields, as
Ḡ
g
x 6= 0. When these phonons propagate alongz, their macro-fields vanish.

Next, there aren odda-states01 with ω2
a = (�2

a + B2
a ). As Ḡa

z = 0, thesez-polarized
solutions create the purely local electrostatic fields which are confined inside the corresponding
layer.

There also existn oddx-polarizedu-states from the set of05 with frequenciesω2
u = �2

u.
According to (11), they never create any electric fields.

And, finally, there are 2n trivial solutions with transversey-polarization(05y) for both
even and oddk = g, u, with doubly degenerate frequenciesω2

k = �2
k.

4.2.3. Finite-wave-vector phonons in(GaAs)10(AlAs)10 [001]. The simple approximation
(19) is not appropriate for the case of finite wave-vectors. However, some qualitative
conclusions can be made on the basis of long-wavelength results as follows. First, for
the case of cross-layer propagation,(0, 0, q) with q = π/D, it is easy to see from the
comparison of figure 2 and figure 5 that the approximationE

q
z (x, z) = eiqzE0

z (z) is a fairly
good one. Next, the numerical analysis shows that for the in-plane propagation,(q, 0, 0),
the relationship dEx(z)/dz = iqEz(z) describes the lattice dynamics data (figure 6, panel
(LD)) with a great degree of accuracy. This means that the relevant fields are longitudinal
ones,E(x, z) = −∇{eiqxφq(z)}, as they should be, because the lattice dynamics calculations
neglect retardation effects. Consequently, thex-components of the fields shown in figure 6,
panel (LD), by solid curves are in fact quantities proportional to the electric potentials induced
by the in-plane-propagating phonons. Assuming a weakq-dependence of the periodic part

φq(z) ≈ lim
q→0

φq(z) +8q

we get a good qualitative agreement (figure 6, panels (LD), (DM)) between the lattice dynamics
and the dielectric model up to an unknown constant8q .

This approximation says nothing about the macroscopic component8q , and quantitative
analysis for the finite-wave-vector propagation demands a closer investigation of the short-
range problem, which is the subject of a forthcoming paper. A comparison of the numerical data
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within the rigid-ion and bond-charge models shows that the radius of action of the mechanical
forces is qualitatively important. It is interesting that a central-force approximation destroys
the above picture entirely, which indicates the crucial role of shear forces in the formation of
polarization fields.

5. Conclusions

We present the lattice dynamical calculations of the local electrostatic fields with a mesoscopic
scale of variation created by the optical phonons in the(GaAs)n(AlAs)m [001] superlattices.
Next we present an alternative model-independent approach based on non-local dielectric
screening, which provides an apparatus for calculating both the optical phonon frequencies
and their local fields within the electrostatic approximation. This dielectric theory treats
the mechanical (short-range) part of the interaction on an equal footing with the long-range
contribution, and is in this sense in the spirit of generalized continuum theories [25, 27], but
in addition takes into account the local field effects. The properties of the electric fields
are in overall agreement with our lattice dynamical data as well as with those obtained in
the existing continuum theories, and can be well understood in terms of eigenpotentials of a
microscopical dielectric matrix. The local field corrections are of fundamental importance,
and change qualitatively the shapes of the direction-dependent modes. A closed analytic form
for the fields and potentials derived in a dispersionless continuum approximation may be of
practical use for the investigation of carrier scattering processes. We believe that the relative
simplicity of the dielectric matrix approach could make it useful in further applications to other
types of nano-structure.

Appendix. The exactly solvable model: non-local dielectric screening in the
dispersionless continuum

The dispersionless continuum approximation is equivalent to the assumptions�2
k = �2,

k = 1, . . . ,∞, η → 0, Bk → B = ξ [4π/(ε∞Vaµ)]1/2. We putτ = 0, thus assuming
the left-hand slab to be the active one.d is its width, andµ̄ = µ/a0 is a reduced mass density.
We retain the labellings = 2m + 1, a = 2m andg = 2m + 1, u = 2m for the even and
oddz- andx-polarized states respectively. The solutions of (5) are normalized to a standard
amplitudeb = (h̄/2�)1/2 asCλ = bC̄λ. One deduces from (6), (14) the following results:

(a) Direction-independent (trivial) solutionsω2
u(05x) = �2.

(b) Direction-independent symmetric solutionsω2
g(05x) = �2 with non-vanishingC̄g satis-

fying the orthogonality condition
∑

g C̄g/g = 0.
(c) Antisymmetric solutions with direction-independent frequenciesω2

a(01) = �2 +1. The
corresponding local fields are directed alongz:

Eaz (z) = E0 sin(πz/d)2(z).

Here2(z) is the stepwise function introduced in (12), and

1 = 4πξ2/(ε∞Vaµ) E0 = bξ/(Va
√
µ̄d).

(d) Taking all coefficientsC̄λ = 0, except theC̄s which satisfy the orthogonality condition∑
s C̄s/s = 0, one get the direction-independent symmetric solutionsω2

s = �2 +1which
originate from03 representations. We can use the multiple degeneracy of the solutions,
and choosēCs = −sC̄1. Taking into account the fact that

∑
λ |C̄λ|2 = 1, we derive the

fields

Esz(z) = E0(s
2 + 1)−1/22(z){sin(πz/d)− s sin(πsz/d)} (A.1)
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with eigenpotentials which are continuous at the interfaces:

φs(z) = −de0E0π
−1(s2 + 1)−1/22(z){cos(πz/d)− cos(πsz/d)}. (A.2)

The average Fourier component of (A.1) and consequently also the macroscopic fieldĒsz
vanish, so these solutions are purely local ones.

(e) TakingC̄(±)s = 2α(±)/(πs) and C̄(±)g = 2α(∓)/(πg), we get two direction-dependent
solutions:

ω2
(±) = �2 +

1

2
1{1±H } α(±) = (1± (1− 2d sin2 ϑ/D)/H)1/2 (A.3)

where

H(ϑ) = (cos2 ϑ + (sin2 ϑ)(D − 2d)2/D2)1/2

andθ is the angle that the phonon propagation vectorq makes with the growth axisz.
Using the relations
∞∑
m=0

1

(2m + 1)2
= 1

8
π2

∞∑
m=0

sin(2m + 1)x

(2m + 1)
= π

4
0< x < π (A.4)

one has, from (11),

E(±)z (z, ϑ) = E(±)macr
z (ϑ) +E(±)local

z (z, ϑ)

with a periodic part (local field) written as

E(±)local
z (z, ϑ) = E0α

(±)[2(z)− d/D]. (A.5)

These solutions create the macroscopic components of the field:

E(±)macr
x (ϑ) = β(±)qx/q E(±)macr

z (ϑ) = β(±)qz/q (A.6)

β(±) = [α(±) cosϑ + α(∓) sinϑ ]d/D. (A.7)

The local fields (A.5) correspond to the periodic potentials

φ(±)local(z, ϑ) = E0e0α
(±){(D − d)(2z− d)2(z) + d(D + d − z)[1−2(z)]}/(2D). (A.8)

We have arrived at the simple result that the irregular solution (A.3) for arbitrary direction
of the phonon wave-vectorq→ 0 constitutes a mixture of a periodic stepwise local field (A.5)
directed along the superlattice’s growth directionz with a homogeneous electric field directed
along the direction of the phonon propagation vectorq with components (A.6), (A.7). It is
easy to check that (A.3), (A.6), (A.7) reduce to the ordinary bulk crystal angle-independent
solutions [36] when the width of the active layer coincides with the super-cell dimension
d = D. A number of first modes (A.2) and mode (A.8) are shown in figure 3, panel (DM).
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